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a b s t r a c t

Based on the pseudo-excitation method (PEM), symplectic mathematical scheme and

Schur decomposition, the random responses of coupled vehicle–track systems are

analyzed. The vehicle is modeled as a spring–mass–damper system and the track is

regarded as an infinitely long substructural chain consisting of three layers, i.e. the rails,

‘‘moving-vehicle model’’ is adopted. The latter assumes that the vehicle moves along a

static track for which the rail irregularity is further assumed to be a zero-mean valued

stationary Gaussian random process. The problem is then solved efficiently as follows.

Initially, PEM is used to transform the rail random excitations into deterministic

harmonic excitations. The symplectic mathematical scheme is then applied to establish

a low degree of freedom equation of motion with periodic coefficients. In turn these are

transformed into a linear equation set whose upper triangular coefficient matrix is

established using the Schur decomposition scheme. Finally, the frequency-dependent

terms are separated from the load vector to avoid repeated computations for different

frequencies associated with the pseudo-excitations. The proposed method is subse-

quently justified by comparison with a Monte-Carlo simulation; the fixed-vehicle model

and the moving-vehicle model are compared and the influences of vehicle velocity and

class of track on system responses are also discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

When a vehicle moves along a track, the track irregularity is a very important source of random excitation, so that
analysis of the coupled system subjected to such excitation is of great importance for vehicle/track design and maintenance.

Very few studies have concentrated on the random vibration analysis of a coupled vehicle–track system. Usually, two
kinds of excitation model are considered: the fixed-vehicle model and the moving-vehicle model. The former assumes that
the vehicle remains stationary relative to the track and that the track irregularities move backwards at the velocity of the
vehicle. This model can be used easily in a frequency domain analysis. It was used by Chen [1] and Li and Wan [2] to derive
the response power spectral densities (PSDs) and Lu et al. [3] who regarded the track as an infinitely long substructural
chain in order to develop a very efficient method for analysing the random responses using the pseudo-excitation method
(PEM) and the symplectic mathematical scheme. Xu et al. [4] investigated the vertical random vibration of the track
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structure of Wuhan light rail. Although the fixed-vehicle model can deal with the random vibration of vehicles, it does not
perform satisfactorily when determining the responses of the track. These shortcomings can be overcome by using the
more realistic moving-vehicle model which assumes motion along the track. However, this introduces time-dependent
systems and as a result has rarely been used previously. Chen [1] and Lei and Noda [5] have used this model to analyze
random responses of such coupled systems, including nonlinear contact springs to simulate the wheel–rail contact forces.
Wang et al. [6] evaluated those parameters that influence train safety and comfort by analyzing a variety of trains running
on a fixed track at different velocities for both passenger and freight traffic. Shi et al. [7] and Long et al. [8] applied
this model to maglev and linear metro coupled vehicle–track systems, respectively, in order to analyze the dynamic
responses excited by track irregularity. Such approaches necessitate the calculation of dynamic responses in the time
domain, using a series of samples from the track irregularity PSD, before transformation into the frequency domain to
obtain the response PSDs.

The purpose of the present paper is to extend the work of Lu et al. [3] by developing an efficient method for computing
response PSDs of vehicle–track coupled systems using the moving-vehicle model. This introduces a time dependency into
the problem, with the result that the responses of the coupled system are non-stationary, even if the excitations are
stationary. This requires a very long section of track to be included in a conventional FE model to make the analysis
reliable. For example, 500–600 degrees of freedom (dof) were used for the vertical response analysis in Refs. [1,5]. In
addition, when solving the equation of motion by using a step-by-step integration method, a fairly long integral time is
needed to reach steady state. In the case of high-speed trains, the high-frequency excitations quickly become more
important, so structural models with higher dof and integration with shorter integral step, as well as longer integral time,
need to be considered.

An overview of the way these difficulties are overcome in the present paper can be gleaned from the following
four steps:
(1)
 Initially PEM [9–11] for fully coherent linear time-dependent structures is used to accelerate the calculation by
transforming random excitations into harmonic pseudo-excitations.
(2)
 The track is then regarded as a periodic structure [12–14] and based on the theory of wave propagation in
substructural chain-type structures [15–19], the symplectic mathematical scheme [20–24] is used to investigate the
random wave propagation. This enables only those sections currently in contact with the vehicle to be included in
the computation, which considerably reduces the computational effort, while retaining the accuracy due to symplectic
characteristics.
(3)
 The equation of motion of the coupled system is then rewritten as a first order linear differential equation group with
periodic coefficients in state-space and the expressions for its periodic state transition matrix and periodic load vector
are then derived. According to the theory of differential equations [25], the solution of such a differential equation
group is also periodic. By using this property and the Schur decomposition scheme, the step-by-step integration
problem is transformed into a linear equation set with an upper triangular coefficient matrix.
(4)
 When using PEM, a series of pseudo-excitations at different frequencies need be dealt with. In order to avoid repeated
computations, the frequency-dependent terms are separated from the load vector.
2. Pseudo-excitation method

The pseudo-excitation method is an accurate and highly efficient algorithm for structural stationary/non-stationary
random response analysis. In the following section its algorithm for stationary fully coherent problems of linear time-
dependent structures is outlined.
2.1. PEM for stationary fully coherent problems of linear time-dependent structures

If the auto-PSD and cross-PSD functions of excitations f1 and f2 satisfy the relationship

Sf1f2
ðoÞ

�� ��2
Sf1f1
ðoÞSf2f2

ðoÞ
¼

Sf2f1
ðoÞ

�� ��2
Sf1f1
ðoÞSf2f2

ðoÞ
¼ 1 (1)

then the two excitations are fully coherent [26]. Usually, multiple excitations caused by the same source, without noise
interference, are fully coherent and in this case the random excitation vector f(t) can be expressed as

fðtÞ ¼ f ðt�t1Þ f ðt�t2Þ � � � f ðt�tmÞ
n oT

(2)

Here f(t) is the random excitation source. Without losing generality, let t1=0, then tj (j=1,2,y,m) would be the time lag
of the jth excitation with respect to the first one. The PSD of f(t) is denoted as Sf(o), where o is circular frequency. The
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input PSD matrix is then

SinðoÞ ¼

1 eioðt1�t2Þ � � � eioðt1�tmÞ

eioðt2�t1Þ 1 � � � eioðt2�tmÞ

^ ^ ^

eioðtm�t1Þ eioðtm�t2Þ � � � 1

2
6664

3
7775Sf ðoÞ (3)

For a linear time-dependent structure subjected to the random excitation f(t), the corresponding response vector can be
expressed by Duhamel’s integral as

zðtÞ ¼

Z t

0
Hðt,tÞfðtÞdt (4)

in which H(t,t) is the frequency response matrix. Multiplying z(t) by its transpose and applying the mathematical
expectation operator, the variance matrix of the response vector can be obtained as

RzzðtÞ ¼ E½zðtÞzTðtÞ� ¼

Z t

0

Z t

0
Hðt,t1ÞE½fðt1Þf

T
ðt2Þ�H

T
ðt,t2Þdt1 dt2 (5)

According to the Wiener–Khintchine theorem

E½fðt1Þf
T
ðt2Þ� ¼

Z þ1
�1

SinðoÞeioðt2�t1Þdo (6)

Substituting Eq. (6) into Eq. (5) and exchanging the integral order gives the evolutionary PSD matrix of response vector
z(t) as

RzzðtÞ ¼

Z þ1
�1

Szzðo,tÞdo (7)

Szzðo,tÞ ¼

Z t

0

Z t

0
Hðt,t1ÞSinðoÞHT

ðt,t2Þe
ioðt2�t1Þdt1 dt2 (8)

It can be seen that Eq. (8) is a double integral expression which is very time consuming to compute directly. Therefore,
PEM will be used instead. Assume that the structure is subjected to a pseudo-excitation

~f ðo,tÞ ¼ e�iot1 e�iot2 � � � e�iotm
� � ffiffiffiffiffiffiffiffiffiffiffiffi

Sf ðoÞ
q

eiot (9)

Eq. (8) can then be rewritten as

Szzðo,tÞ ¼ ~z�ðo,tÞ ~zTðo,tÞ, ~zðo,tÞ ¼

Z t

0
Hðt,tÞ~f ðo,tÞdt (10)

where the superscript n represents the complex conjugate. It is clear that ~zðo,tÞ is the response of the structure when it is
subjected to the pseudo-excitation and that the first of Eqs. (10) has a much simpler form than Eq. (8). Thus, the use of PEM
to transform random excitations into harmonic pseudo-excitations leads to a significant reduction in computational effort.

2.2. Application of PEM to coupled vehicle–track systems

The model for the random vibration analysis of the coupled vehicle–track system is shown in Fig. 1. The vehicle with
four wheels is modelled as a spring–mass–damper system with 10 dof and the track is regarded as an infinitely long
substructural chain consisting of three layers, i.e. the rails, sleepers and ballast. The vehicle and the track are coupled via
linear springs [1] of stiffness kh ¼ 1:5P1=3

0 =G, where P0 is the static wheel–rail force and G is a contact constant. Assume that
the vehicle is moving at velocity v on the track whose irregularity, r(x), varies with distance x(t) and can be regarded as a
zero-mean valued stationary random process with PSD Ss

rrðOÞ known, where O is the spatial frequency. In the time domain,
this corresponds to a PSD of track irregularity r(t) of St

rrðoÞ ¼ Ss
rrðOÞ=v. The random excitations applied to the wheels by the

track can be expressed by the vector

f ¼CðtÞrðtÞ (11)

in which C(t) varies with the vehicle position and r(t) is a vector of track irregularities at the wheel–rail contact points,
given by

rðtÞ ¼ rðt�t1Þ rðt�t2Þ rðt�t3Þ rðt�t4Þ
� �T

(12)

where

t1 ¼ 0, t2 ¼ 2lt=v, t3 ¼ 2lc=v, t4 ¼ 2ðltþ lcÞ=v (13)
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Here 2lt and 2lc are the wheel pair and bogie spacing, respectively. According to PEM, the pseudo-excitation can be
defined as

~f ðtÞ ¼CðtÞ e�iot1 e�iot2 e�iot3 e�iot4
� �T ffiffiffiffiffiffiffiffiffiffiffiffiffi

SrrðoÞ
p

eiot (14)

This excitation can then be used with the equation of motion to determine the pseudo-response of the system. The
corresponding PSDs and standard deviation follow directly using PEM.

3. Symplectic analysis for infinitely long substructural chain

In this section, the symplectic mathematical scheme is generalized for the first time to investigate the random wave
propagation, as follows. Consider the infinitely long substructural chain of Fig. 2, which consists of unloaded identical
substructures, denoted as sub; and the loaded, but otherwise identical substructure subn, which is subjected to an arbitrary
load f(t). The equation of motion of the loaded substructure is

M €yþC _yþKy¼ fðtÞþfb (15)

in which

y¼ yT
a yT

b yT
i

n oT
, fb ¼ pT

a �pT
b pT

i

n oT
(16)

where ya and yb are the displacement vectors at the left- and right-hand interfaces and yi is the internal displacement
vector and; Pa, Pb and Pi are the corresponding nodal force vectors. For a typical undamped substructure without external
Fig. 1. Model of coupled vehicle–track system.

Fig. 2. Infinitely long substructural chain.
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excitation, it has been proven [22] that

yb

pb

( )
¼D

ya

pa

( )
¼ m

ya

pa

( )
(17)

in which D(o) is a symplectic transfer matrix that satisfies the equation

DTJnD¼ Jn, Jn ¼
0 In

�In 0

" #
, JT

n ¼ J�1
n ¼�Jn (18)

where In is the n-dimensional unit matrix; and if m is an eigenvalue of D(o), then so is 1/m. These eigenvalues are called
wave propagation constants and 9m9=1 refers to transmission waves that propagate without decay at frequencies that lie
within the frequency passband [9]. For such a periodic structure, there are infinitely many transmission frequencies.
Since9m9=1, we can assume m=eiy and select a finite number of yj (j=1,2,y,m) evenly in the interval [0, 2p) to calculate the
responses. For each corresponding wave propagation constant mj (j=1,2,y,m), it can be verified that

ya

yb

yi

8><
>:

9>=
>;¼

I 0

mjI 0

0 I

2
64

3
75 ya

yi

( )
¼ Tj

ya

yi

( )

TH
j fb ¼

I m�1
j I 0

0 0 I

" # pa

�pb

0

8><
>:

9>=
>;¼

pa�m�1
j pb

0

( )
¼

0

0

� � (19)

By using the complete set of eigenvectors Wj associated with the mj, the mode-superposition equation can be written as

yj ¼ TjWjqj (20)

The response of the kth substructure is then given by

yk ¼
1

m

Xm

j ¼ 1

mk
j yj ¼

1

m

Xm

j ¼ 1

mk
j TjWjqj (21)

where k=0 corresponds to the loaded substructure, k40 to the substructures to its right and ko0 to the substructures to
its left. The Wj can be obtained by solving the following generalized eigenproblem

TH
j KTjWj ¼ TH

j MTjWjX
2
j (22)

Substituting Eqs. (20) and (21) into Eq. (15) and multiplying both sides by WH
j TH

j gives

Mj €qjþCj _qjþKjqj ¼WH
j TH

j fðtÞ (23)

in which

Mj ¼WH
j TH

j MTjWj, Cj ¼WH
j TH

j CTjWj, Kj ¼WH
j TH

j KTjWj (24)

Combining the equations corresponding to each of the m propagation constants gives

M €qþC _qþKq¼ f (25)

4. Equation of motion of the coupled vehicle–track system

In this section, the equation of motion for the coupled vehicle–track system excited by the harmonic pseudo-excitations
is established.

4.1. Equation of motion of the vehicle

The equation of motion of the vehicle is

Mv €yvþCv _yvþKvyv ¼ fv (26)

where

fv ¼ 0 0 0 0 0 0 fw1 fw2 fw3 fw4

n oT
(27)

Here Mv, Cv and Kv are the mass, damping and stiffness matrices of the vehicle; yv is the vertical displacement vector and;
fwi (i=1,2,3,4) are the wheel–rail forces.
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4.2. Equation of motion of the track

Each substructure of the track consists of a pair of rail sections, idealised as a single Bernoulli–Euler beam element
between two adjacent sleepers, one of the two sleepers and the corresponding ballast segment are shown in Fig. 3. For the
loaded substructure in contact with the ith wheel pair, the equation of motion is

Mt €y iþCt _y iþKtyi ¼NðxiÞfwiþfbi (28)

where yi is the displacement vector of the substructure; fbi is its boundary force vector and N(xi) is the shape function
vector of the Bernoulli–Euler beam element, where the xi are the dimensionless natural coordinates of the wheel–rail
contact points that vary with distance x(t). Proceeding in the same ways as Section 3, it is possible to write Eq. (28) in the
form of Eq. (25) as

Mt €q iþCt _q iþKtqi ¼ f i ði¼ 1,2,3,4Þ (29)

It should be noted that, when solving Eq. (29) using step-by-step integration, the integral initial value can be
determined from Eq. (21) if one of the wheels moves to the adjacent substructure.

4.3. Equation of motion of coupled vehicle–track systems

When the coupled system is subjected to the pseudo-excitation presented in Section 2.2, the wheel–rail force can be
expressed as

~f wi ¼ kh ~yw
ri� ~y

w
viþ

ffiffiffiffiffiffi
Srr

p
eioðt�tiÞ

� 	
(30)

where ~yw
viand ~yw

ri are the pseudo-displacements of the wheels and rails at the wheel–rail contact point. As the track is
subject to four wheel–rail forces, any displacement of the ith substructure can be obtained as the sum of the responses ~yki

caused by each of the wheel–rail forces, i.e.

~y t
i ¼

X4

k ¼ 1

~yki (31)

According to Ref. [1], the effective range of the wheel–rail force on the track is about 10 sleeper spacings, so any
influences exceeding this range are ignored. In this way ~yw

ri can be obtained from the following equation:

~yw
ri ¼NT

ðxiÞ ~y
t
i (32)

Substituting Eqs. (30)–(32) into Eqs. (26)–(29) and combining them into a single equation gives the equation of motion
of the coupled system as

Mv

M�t


 � €~yv

€~q

( )
þ

Cv

C�t

" #
_~yv

_~q

( )
þ

Kv �Rv

�R0 K�t�Rt

" #
~yv

~q

( )
¼

Fv

Ft

( )
E
ffiffiffi
S
p

eiot (33)

where ~q ¼ ~qT
1
~qT

2
~qT

3
~qT

4

� �T
is the pseudo-generalized displacement vector of the track

M�t ¼

Mt

Mt

Mt

Mt

3
77775, C�t ¼

Ct

Ct

Ct

Ct

3
77775, K�t ¼

Kt

Kt

Kt

Kt

3
77775, E¼

e�iot1

e�iot2

e�iot3

e�iot4

8>>><
>>>:

9>>>=
>>>;

2
66664

2
66664

2
66664 (34)
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where Rv, R0 and Rt are time-dependent matrices and Fv and Ft are load coefficient matrices. Since these equations all share
the same shape function N(xi) and are periodic, Eq. (33) can be written in the form

Ms
€~ysþCs

_~ysþKsðtÞ ~ys ¼ FsðtÞEðo,vÞ
ffiffiffi
S
p

eiot (35)

where

KsðtþTÞ ¼KsðtÞ, FsðtþTÞ ¼ FsðtÞ (36)

and the period T= l/v, where l is the sleeper spacing.

5. Solution of the coupled vehicle–track system

5.1. Periodic state transition matrix and periodic load vector

Eq. (35) can be transformed to state-space as

_~v ¼HðtÞ ~vþ ~f ðo,tÞ (37)

where

~v ¼
~ys

_~ys

)
, HðtÞ ¼

0 I

�M�1
s KsðtÞ �M�1

s Cs

" #
, ~f ðo,tÞ ¼

0

M�1
s FsðtÞ

" #
Eðo,vÞ

ffiffiffi
S
p

eiot

(
(38)

Usually, Eq. (37) is solved using a step-by-step integration scheme. Thus if the response at time tk is denoted by ~vk, the
response at time tk +1 can be expressed as

~vkþ1 ¼U½tkþ1,tk� ~vkþ ~rk, ~rk ¼RkEðo,vÞ
ffiffiffi
S
p

eiotk (39)

where U[n] denotes the state transition matrix, which has the property

U½ta,tb� ¼U½ta,tc�U½tc ,tb� (40)

Assume now that s integration steps are adopted in one period. If the initial value is denoted by ~vðt0Þ ¼ ~v0 and the
terminal value by ~vðt0þTÞ ¼ ~vT , Eqs. (39) and (40) yield

~vT ¼U½t0þT,t0� ~v0þ ~rT (41)

in which

U½t0þT,t0� ¼
Y0

i ¼ s�1

U½tiþ1,ti�, ~rT ¼
Xs�2

k ¼ 0

Ykþ1

i ¼ s�1

U½tiþ1,ti�

 !
~rkþ ~rs�1 (42)

are the periodic state transition matrix and the periodic load vector, respectively.

5.2. Solution for the periodic state transition matrix and periodic load vector

It can be seen from the first of each of Eqs. (39) and (42) that the periodic state transition matrix U[t0+T, t0] is constant
and therefore only needs to be calculated once. However, its calculation requires multiple matrix multiplications. If the size
of the FE model is very large, as is the case when high-frequency components must be included, this calculation would be
quite costly. It is therefore desirable to adopt a new method to calculate U[t0+T, t0], as follows. Let

~v0 ¼ I, ~rT ¼ 0 (43)

where I is a unit matrix with the same order as U[t0+T, t0]. Substituting Eq. (43) into Eq. (41) then gives

~vT ¼U½t0þT,t0� (44)

Consequently, U[t0+T, t0] can be computed using the following algorithm: (1) take each column of the unit matrix I in
turn and assume it to be the initial value of the coupled system response; (2) solve Eq. (35) using Newmark’s method to
obtain the response after one period, assuming the load vectors to be zero at all times; (3) update the corresponding
columns of U[t0+T, t0]. Note that care must be taken to allow for the possibility of a wheel pair moving on to an adjacent
substructure.

On the other hand, it can be seen from the second of each of Eqs. (39) and (42) that the periodic load vector ~rT is related
to load frequency. Thus when using PEM, which requires a series of pseudo-excitations at different frequencies to be
imposed, it is important to avoid repeated computations. This can be achieved as follows. In the second of Eqs. (39) denote
the factors related to load frequency by gk, i.e.

Eðo,vÞ
ffiffiffi
S
p

eiotk ¼ gk ðk¼ 0,1,. . .,s�1Þ (45)
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Then substituting the second of Eqs. (39) into the second of Eqs. (42) gives

~rT ¼
Xs�2

k ¼ 0

Ykþ1

i ¼ s�1

U½tiþ1,ti�

 !
RkgkþRs�1gs�1 ¼

Xs�1

k ¼ 0

Gkgk (46)

In Eq. (46) the factors related to load frequency have been separated from the others, so Gkðk¼ 0,1,. . .,s�1Þ need be
calculated only once in order to obtain the periodic load vector ~rT . This can be achieved in a similar way to the solution of
U[t0+T, t0]. Let

~v0 ¼ 0, gk ¼
1 k¼ j

0 kaj
ðj¼ 0,1,. . .,s�1Þ

(
(47)

Substituting Eq. (47) into Eqs. (41) and (46) gives

~vT ¼ Gj (48)

~rT can then be computed by using the following algorithm: (1) assume the initial value of the coupled system response
vector is zero; (2) for each jðj¼ 0,1,. . .,s�1Þ , take each column of Fs(tj) as the load vector at time tj, while assuming the load
vectors at other times be zero, and then solve Eq. (35) by using Newmark’s method to obtain the response after one period;
(3) update the corresponding columns of Gj and; (4) calculate the periodic load vector ~rT subject to different pseudo-
excitations according to Eq. (46).

During the above calculation, the scheme for vehicle–bridge interaction analysis was performed according to Yang and
Wu [27].

5.3. Periodicity of the response of the coupled system

Assume that the pseudo-response of the coupled system can be expressed in the following form:

~v ¼ veiot , _~v ¼ ð _vþ iovÞeiot (49)

Substituting Eq. (49) into Eq. (37) gives

_v¼ ðHðtÞ�ioIÞvþFðtÞEðo,vÞ
ffiffiffi
S
p
¼ AðtÞvþaðtÞ (50)

According to Eqs. (36) and (38), A tð Þ and a tð Þ are periodic

AðtþTÞ ¼AðtÞ, aðtþTÞ ¼ aðtÞ (51)

Thus, Eq. (50) is a differential equation group with periodic coefficients and therefore has a periodic solution [25], i.e.

vðtþTÞ ¼ vðtÞ (52)

Clearly, Eqs. (51) and (52) are not valid if PEM is not used.

5.4. Response of the coupled vehicle–track system

Without losing generality, let t0=0 and substitute Eqs. (49) and (52) into Eq. (41) to give

ðIeioT�U½T,0�Þvð0Þ ¼ ~rT (53)

where U[T, 0] is the periodic state transition matrix, which is usually a full matrix. Hence the coefficient matrix of Eq. (53)
is also a full matrix and is related to the load frequency. A large amount of computational effort is then required if Eq. (53)
is solved directly at different frequencies. Improved efficiency in this area can be achieved by performing a Schur
decomposition scheme on U[T, 0], i.e.

U½T,0� ¼UTUT, UUT
¼ I (54)

where U is an orthogonal matrix and T is an upper triangular matrix. Substituting Eq. (54) into Eq. (53) gives

ðIeioT�TÞUTvð0Þ ¼UT ~rT (55)

The following change of variable

w¼UTv (56)

allows Eq. (55) to be written as

ðIeioT�TÞwð0Þ ¼UT ~rT (57)

Thus, the original step-by-step integration problem is transformed into a linear equation set with an upper triangular
coefficient matrix that yields wð0Þ from Eq. (57). Considering the orthogonality of matrix U, Eqs. (49) and (56) lead to

~vð0Þ ¼ vð0Þ ¼Uwð0Þ (58)
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Since the pseudo-responses ~vð0Þ at time t=0 have already been obtained, it is not difficult to calculate the pseudo-
responses at other times. Denoting the pseudo-response of the variable u(t) as ~uðo,tÞ and utilising PEM, the PSD of u(t) can
be written as

Sðo,tÞ ¼ ~uðo,tÞ ~u�ðo,tÞ (59)

6. Numerical examples

The parameters of the high-speed train manufactured in the Changchun Railroad Carriage Manufacturing Plant are
listed in Table 1 [1] and the track parameters are listed in Table 2. As only a half vehicle–track model is employed, some of
the parameters must be halved in the calculation. The American track spectrum, i.e. function (a) of Eq. (60), will be adopted
when the track wavelength is longer than 1 m; otherwise function (b) of Eq. (60) proposed by the Chinese Railway Science
Academy [1] will be used. In these two functions k, Av and Oc take different values for different classes of track, as listed
in Table 3

ðaÞ SrðOÞ ¼
kAvO2

c

O2
ðO2
þO2

c Þ
ðcm2=rad=mÞ

ðbÞ Srðf Þ ¼ 0:036f�3:15 ðmm2=cycle=mÞ

(60)

The responses of the sleepers beneath the first wheel pair are now investigated. American track spectrum class 6 and
vehicle velocity of 100 km/h are assumed in the calculation unless specified otherwise.

6.1. Comparison with a Monte-Carlo simulation

This simulation firstly generates a large number of track irregularity samples in the time domain using the track profile
irregularity PSD. The responses of the coupled vehicle–track system are then calculated for each sample, before final
transformation into the frequency domain to obtain the response PSDs. Table 4 lists the standard deviations of the coupled
system as well as the computation times. Since a Monte-Carlo simulation is performed in the time domain, its results will
fluctuate with time. Hence the results listed are the mean values and the fluctuation ranges of the responses with the first
wheel pair passing through 50 sleepers during a steady running state. It can be seen that if the sample number is 5,
the mean values differ substantially from the results given by the proposed method. If the number of samples is increased
Table 1
Vehicle parameters.

Vehicle body mass, Mc 34�103 kg Primary suspension, ct 6�103 N s/m

Vehicle body inertia, Jc 2.277�106 kg m2 Secondary suspension, kc 400�103 N/m

Bogie mass, Mt 3000 kg Secondary suspension, cc 80�103 N s/m

Bogie inertia, Jt 2710 kg m2 Wheelset spacing, 2lt 2.4 m

Wheelset mass, Mw 1400 kg Bogie spacing, 2lc 18 m

Primary suspension, kt 550�103 N/m Contact constant, G 5.135�103 m/N2/3

Table 2
Track parameters.

Rail bending stiffness, EI 6.62�106 N m2 Ballast stiffness, kb 1.82�108 N/m

Linear density of rail, rA 60.64 kg/m Subgrade stiffness, kf 1.47�108 N/m

Sleeper spacing, l 0.545 m Railpad damping, cp 7.5�104 N s/m

Sleeper mass, ms 237 kg Ballast damping, cb 5.88�104 N s/m

Ballast mass, mb 1478 kg Subgrade damping, cf 3.115�104 N s/m

Railpad stiffness, kp 1.2�108 N/m

Table 3
Parameters for the American track spectrum.

Parameter Value

Class 6 Class 5 Class 4

k 0.25 0.25 0.25

Av 0.0339 0.2095 0.5376

Oc 0.8245 0.8245 0.8245
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Table 4
Comparison between the proposed method and Monte-Carlo simulation with the number of samples shown in italics.

The proposed method Monte-Carlo simulation

Standard

deviation

CPU time (s) Standard deviation CPU time (s)

(100)

5 20 100

Body acceleration 0.1126 0.968 0.086170.0352 0.108670.0524 0.109270.0139 6085

1st bogie acceleration 0.4388 1.953 0.370370.4088 0.397970.2097 0.438770.0826 6194

Sleeper acceleration 38.7380 3.922 34.7361736.3041 37.7349719.4098 38.722975.6498 7319

Ballast acceleration 20.315 3.922 16.1386713.0708 19.3537710.0375 20.363372.7547 6083

1st wheel–rail force 26,189 21.20 18,003721,720 25,50678005 26,50273427 15,596

The units of the standard deviations are N for the last row and m/s2 else where.

Fig. 4. PSD of vehicle body vertical acceleration.
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to 20, the mean values given by the two methods agree only slightly better, and the fluctuation ranges are still too large. A
further increase to 100 samples yields results that agree to at least a tolerable level, which justifies the correctness of the
proposed method, although the fluctuations are still around 10–20%. Clearly, many more samples would be required to
obtain satisfactory results from the Monte-Carlo method; however, the effort required would be unacceptable.

The CPU times for the proposed method and the Monte-Carlo simulation with 100 samples are also listed in Table 4. In
the calculation, the parameter m takes the value of 10 when calculating the responses of the vehicle body and bogies, and
20 for other responses. For the responses calculated, the closer their locations are to the wheel–rail contact points, the
more frequencies associated with the pseudo-excitations are required to ensure suitable accuracy. In similar fashion,
shorter integral steps and longer integral time are required for the Monte-Carlo simulation. As discussed in Section 5.2, the
periodic state transition matrix U[t0+T,t0] and the matrices Gkðk¼ 0,1,. . .,s�1Þ in Eq. (46) only need to be calculated once
for each value of m, which takes 69.9 s or 423.6 s for m=10 or 20, and this result can be used directly when calculating the
responses of the coupled system.
6.2. Comparison between the two excitation models

In this example, the fixed-vehicle model and the moving-vehicle model are compared. The responses of the fixed-
vehicle model are given by the solid line, while those of the moving-vehicle model are given by the asterisks in Figs. 4 and 5
and by the dotted line in Fig. 6.

Fig. 4 gives the PSD curves of the vehicle body vertical acceleration, which show that the results calculated by the two
models agree very well. The peak values at point A are 1.614036�10�2 m2/s4/Hz for the fixed-vehicle model and
1.614070�10�2 m2/s4/Hz for the moving-vehicle model, an error of only 0.0021%. The bogie acceleration PSD curves
calculated by the two models are equally close, but are not given in the figures. Fig. 5 gives the PSD curves of the 1st and
2nd wheel–rail contact forces. It can be seen from Fig. 5(a) that the PSD curves of the 1st wheel–rail contact force are still
reasonably close to each other. The peak values at point B are 4.055�107 N2/Hz for the fixed-vehicle model and
4.1143�107 N2/Hz for the moving-vehicle model, an error of 1.44%. However, a much bigger difference exists between the
PSD curves of the 2nd wheel–rail contact force, as shown in Fig. 5(b). The peak values at point C are 3.1681�107 N2/Hz for
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Fig. 5. PSDs of rail–wheel contact force: (a) 1st wheel and (b) 2nd wheel.

Fig. 6. PSD of sleeper vertical acceleration.
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the fixed-vehicle model and 1.5451�107 N2/Hz for the moving-vehicle model, a difference in excess of 100%. In addition, it
is found that with increasing vehicle velocity, the difference between the results calculated by the two models also
increases.

Fig. 6 gives the vertical acceleration PSD curves of the sleeper under the 1st wheelset. Only the results between
frequencies 48–55 Hz are shown, to make the peaks clear. It can be seen that the results calculated by the two models are
quite different. The peak value for the fixed-vehicle model at point D is 39.5725 m2/s4/Hz and for the moving-vehicle
model at point E is 52.4057 m2/s4/Hz. The error is 24.49% and the peaks correspond to different frequencies. Similar
conclusions can also be drawn by comparing the PSDs of the rail and the ballast. Figs. 4–6 lead to the following
conclusions: Since the global dynamic responses of the vehicle body and bogies are nearly zero-mean and stationary, the
results calculated by the fixed-vehicle model are also reliable. On the other hand, the local non-zero-mean dynamic
responses of the wheel–track system are only reliable when they are calculated by the moving-vehicle model.
6.3. Influence of vehicle velocity

Vehicle velocity has an important influence on system responses. Fig. 7 gives the response PSD curves of the vehicle at
velocities of 80, 160 and 250 km/h. As shown in Fig. 7(a), when v=80 km/h, the main peak, A, of the body acceleration PSD
curve is at about 1.2 Hz. As the velocity is increased to 160 km/h, peak A decreases, while the corresponding frequency
increases to about 2.1 Hz. In addition, the smaller peak, B, grows as the frequency increases to about 1 Hz. If the velocity is
further increased to 250 km/h, peak B at about 1 Hz increases remarkably and becomes the new main peak, while peak A
further decreases and becomes the second highest peak at about 3.2 Hz. This clearly indicates that the peak of the body
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Fig. 7. PSDs of vehicle responses at different velocities: (a) body vertical acceleration, (b) 1st bogie vertical acceleration, and (c) 1st wheel–rail contact

force.
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acceleration PSD curve does not always increase with the vehicle velocity. In order to establish a picture of how the peaks
vary with the vehicle velocity, the body acceleration PSDs at velocities between 80 and 250 km/h were investigated. The
results show that with increasing velocity, the peak frequencies at A and B of Fig. 7(a) move towards the right with the
peak values decreasing at A and increasing at B. The two peaks coincide with each other at a velocity of about 190 km/h,
which agrees with Ref. [3]. In addition, as shown in Fig. 7(b), there exist extra peaks near 50 and 90 Hz on the bogie
acceleration PSD curve. Comparing Fig. 7(a–c), it is clear that the peaks at several frequencies can be attributed to the
influence of body response, while the peaks at 50 and 90 Hz are attributable to the influence of the wheel–rail force.
Usually, such peaks would appear near the natural frequencies of the system. For the moving-vehicle model, however, the
distribution of load PSD in the frequency domain considerably affects the PSDs of responses. In turn, the responses caused
by different loads will superpose or counteract in different ways, depending heavily on the vehicle velocity. This leads to
the complex phenomena shown across Fig. 7(a–c).

Fig. 8 gives the response PSD curves of the rail, sleeper and ballast under the 1st wheel pair at different velocities. It can
be seen that although the peaks at several frequencies appear on all the PSD curves, they have very little effect on the
responses of the track system, due to the low-frequency components of the interactive forces. The vibration energy of the
rail and the sleepers is concentrated in a frequency band from tens to thousands of Hz while the equivalent band for ballast
stretches across tens to a hundred of Hz. As the velocity increases, the responses increase as well; however, the vibration
energy distribution with frequency does not vary significantly.
6.4. Influences of class of track

The class of track is also a very important factor in the responses of the coupled system. In this section, responses at a
velocity of 200 km/h for classes 4–6 track are discussed.
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Fig. 8. PSD of track vertical accelerations at different velocities: (a) rail, (b) sleeper, and (c) ballast.
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As shown in Fig. 9(a), the class of track has a great influence on the responses of the vehicle. The lower the class of track
is, the stronger the responses of the vehicle are, but the distribution of vibration energy in the frequency domain varies
very little.

Fig. 9(b)–(d) give the PSDs of rail, sleeper and ballast under the 1st wheel pair for different classes of track. It can be seen
that the class of track only affects the dynamic responses of the track structure significantly when the frequency is lower
than 100 Hz and has almost no effect when the frequency is higher than 100 Hz. It is clear that the high-frequency
responses of the track are caused by the track itself and therefore have little relation to the class of track.
7. Conclusions

An innovative method has been proposed that combines the pseudo-excitation method, symplectic mathematical
scheme and Schur decomposition scheme to analyze the random responses of coupled vehicle–track systems. The method
is justified by comparison with a very much slower Monte-Carlo simulation. The following general conclusions can be
drawn from the paper.
1.
 The dynamic responses of the vehicle body and bogies are nearly zero-mean and stationary, so that the results obtained
using a fixed-vehicle model are also reliable. However, this is not so when computing responses of the wheels and track
system, which must be calculated by the moving-vehicle model.
2.
 Vehicle velocity has an important influence on system responses. As the vehicle velocity increases, the responses of
vehicle do not always follow suit. However, while the responses of track increase with velocity, the distribution of track
vibration energy in the frequency domain varies very little.
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Fig. 9. PSD of vertical accelerations for different classes of track for a vehicle traveling at 200 km/h: (a) vehicle body, (b) rail, (c) sleeper, and (d) ballast.
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3.
 The class of track has a great influence on the responses of the vehicle, but has rather little influence on the responses of
the track itself, especially in the high-frequency regions, where the influence can be ignored completely.

The symplectic method presented in the paper was used to reduce the dof of the track. It can also be used to derive
responses of periodic structures subject to arbitrary loads, or be extended to other fields, such as optimization or control of
coupled vehicle–track systems. Although only one carriage was considered in the numerical examples, a train with any
number of locomotives and carriages can be dealt with similarly.
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